
Week 9 Part 2
Kyle Dewey

Thursday, August 23, 12

Overview

• Announcement

• More with structs and memory

• Assertions

• Exam #2

• Course review

Thursday, August 23, 12

Next “Lab”

• No pre-lab

• The lab will be entirely review

• It will be graded

Thursday, August 23, 12

More with Structs

Thursday, August 23, 12

Nesting Structs

• We can also nest structs, like so:

struct Point {
 int x;
 int y;
};
struct Circle {
 struct Point center;
 int radius;
};

Thursday, August 23, 12

struct Address {
 int streetNumber;
 char* street;
 int zip;
 int state;
};
struct Date {
 int month;
 int day;
 int year;
};
struct Person {
 struct Address address;
 char* name;
 struct Date birthday;
};

Thursday, August 23, 12

Pointers to Structs

• Remember, we can also have pointers to
other structs in a struct, or even pointers
to a struct of the same type

struct IntegerList {
 int integer;
 struct IntegerList* nextInteger;
};

Thursday, August 23, 12

Returning Structs

• Structs can be returned just like any other
data

• The same rules about structs versus
pointers to structs apply

Thursday, August 23, 12

Returning Structs
• This code is perfectly valid:

struct Foo { int x; int y; };

struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

Thursday, August 23, 12

Internal Representation
struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

f
struct Foo
x: undef
y: undef

Thursday, August 23, 12

Internal Representation
struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

f
struct Foo
x: undef
y: undef

Thursday, August 23, 12

Internal Representation
struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

f
struct Foo
x: undef
y: undef

Thursday, August 23, 12

Internal Representation
struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

f
struct Foo
x: undef
y: undef

retval
struct Foo

x: 1
y: 2

Thursday, August 23, 12

Internal Representation
struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

f
struct Foo
x: undef
y: undef

retval
struct Foo

x: 1
y: 2

Thursday, August 23, 12

Internal Representation
struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

f
struct Foo

x: 1
y: 2

retval
struct Foo

x: 1
y: 2

copy

Thursday, August 23, 12

Internal Representation
struct Foo doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return retval;
}
int main() {
 struct Foo f;
 f = doSomething(1);
 return 0;
}

f
struct Foo

x: 1
y: 2

Thursday, August 23, 12

Returning Structs
• This code has an issue:

struct Foo { int x; int y; };

struct Foo* doSomething(int a) {
 struct Foo retval = { a, a + 1 };
 return &retval;
}
int main() {
 struct Foo* f;
 f = doSomething(1);
 return 0;
}

Thursday, August 23, 12

Problem

Stack Heap

struct Foo retval = { a, a + 1 };

retval
struct Foo

x: 1
y: 2

Thursday, August 23, 12

Problem

Stack Heap

return &retval;

retval
struct Foo

x: 1
y: 2

retval

Thursday, August 23, 12

Problem

Stack Heap

<<doSomething returns without copy>>

retval

????????????
????????????
????????????
????????????

Thursday, August 23, 12

Problem

Stack Heap

struct Foo* f = doSomething(1);

retval

????????????
????????????
????????????
????????????

Thursday, August 23, 12

Returning Structs
• This code is ok:

struct Foo { int x; int y; };
struct Foo* doSomething(int a) {
 struct Foo* retval =
 malloc(sizeof(struct Foo));
 retval->x = a;
 retval->y = a + 1;
 return retval;
}
int main() {
 struct Foo* f = doSomething(1);
 free(f);
 return 0;
}

Thursday, August 23, 12

Why it’s Ok

Stack Heap

struct Foo* retval =
 malloc(sizeof(struct Foo));

struct Foo
x: undef
y: undef

retval

Thursday, August 23, 12

Why it’s Ok

Stack Heap

retval->x = a;
retval->y = a + 1;

struct Foo
x: 1
y: 2

retval

Thursday, August 23, 12

Why it’s Ok

Stack Heap

return retval;

struct Foo
x: 1
y: 2

retval

Thursday, August 23, 12

Why it’s Ok

Stack Heap

struct Foo* f = doSomething(1);

struct Foo
x: 1
y: 2

retval

f

copy

Thursday, August 23, 12

Why it’s Ok

Stack Heap

struct Foo* f = doSomething(1);

struct Foo
x: 1
y: 2

f

Thursday, August 23, 12

Why it’s Ok

Stack Heap

free(f);

????????????
????????????
????????????

f

Thursday, August 23, 12

Recall

• The stack is automatically managed

• Allocation: variable / struct / array
declaration

• Deallocation: leave a block

• The heap is manually managed

• Allocation: malloc / calloc /
realloc

• Deallocation: free
Thursday, August 23, 12

Assertions

Thursday, August 23, 12

Assertions

• Used to assert that something is true at a
given point

• If it is true, the program goes on

• If it is not true, then the program
terminates

Thursday, August 23, 12

Using Assertions

#include <assert.h>
int main() {
 assert(3 * 2 > 7);
 return 0;
}

Assertion failed: (3 * 2 > 7),
function main, file assert.c, line 4.
Abort trap: 6

Thursday, August 23, 12

Usefulness

• Great for debugging

• Can put assumptions into code

• Acts as executable documentation

void doSomething(int* pointer) {
 // assume pointer isn’t NULL
 assert(pointer != NULL);
 printf(“%i\n”, *pointer);
}

Thursday, August 23, 12

Caveats

• They are intended as a debugging tool

• They can be shut off like so:

#define NDEBUG
#include <assert.h>
int main() {
 assert(3 * 2 > 7);
 return 0;
}

Thursday, August 23, 12

Question #1

#include <assert.h>
int main() {
 int x = 0;
 assert(x = 3);
 // what does x equal?
 return 0;
}

Thursday, August 23, 12

Question #1

#include <assert.h>
int main() {
 int x = 0;
 assert(x = 3);
 // x == 3
 return 0;
}

Thursday, August 23, 12

Question #2

#define NDEBUG
#include <assert.h>
int main() {
 int x = 0;
 assert(x = 3);
 // what does x equal?
 return 0;
}

Thursday, August 23, 12

Question #2

#define NDEBUG
#include <assert.h>
int main() {
 int x = 0;
 assert(x = 3);
 // x = 0
 return 0;
}

Thursday, August 23, 12

The Point

• No work should be done in an assertion

Thursday, August 23, 12

Exam #2

Thursday, August 23, 12

Statistics

• Average: 78

• Min: 52

• Max: 97

• A’s: 8

• B’s: 12

• C’s: 15

• D’s: 4

• F’s: 2

Thursday, August 23, 12

Course Review

Thursday, August 23, 12

