Week 9 Part 2

Kyle Dewey

Overview

® Announcement
® More with structs and memory
® Assertions

® Exam #2

® Course review

Thursday, August 23, 12

Next “Lab”

® No pre-lab
® The lab will be entirely review

¢ |t will be graded

More with Structs

Nesting Structs

® VVe can also nest structs, like so:

struct Point {
int x;
int vy;
b s
struct Circle {
struct Point center;
int radius;

by

Thursday, August 23, 12

struct Address {
1nt streetNumber;
char* street;
int z1p;
int state;
bs
struct Date {
int month;
int day;
int year;
bs
struct Person {
struct Address address;
char* name;
struct Date birthday;

by

Thursday, August 23, 12

Pointers to Structs

® Remember, we can also have pointers to
other structs in a struct, or even pointers
to a struct of the same type

struct IntegerList {
int 1nteger;
struct IntegerlLilist* nextlInteger;

by

Thursday, August 23, 12

Returning Structs

® Structs can be returned just like any other
data

® [he same rules about structs versus
pointers to structs apply

Thursday, August 23, 12

Returning Structs

® This code is perfectly valid:

struct Foo { i1nt x; 1int vy; };

struct Foo doSomething(int a) {
struct Foo retval = { a, a 1
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

j

Thursday, August 23, 12

Internal Representation

struct Foo doSomething(1nt a) {
struct Foo retval = { a, a + 1 };
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

f

SisileblcE e

X: undet
V.. undet

Thursday, August 23, 12

Internal Representation

struct Foo doSomething(1nt a) {
struct Foo retval = { a, a + 1 };
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

f

SisileblcE e

X: undet
V.. undet

Thursday, August 23, 12

Internal Representation

struct Foo doSomething(int a) {
struct Foo retval = { a, a + 1 };
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

f

SisileblcE e

X: undet
V.. undet

Thursday, August 23, 12

Internal Representation

struct Foo doSomething(int a) {
struct Foo retval = { a, a + 1 };
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

f

SisileblcE e

retval
SiEileblcE S [ee

X: undet
V.. undet

Thursday, August 23, 12

Internal Representation

struct Foo doSomething(1nt a) {
struct Foo retval = { a, a + 1 };
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

f

SisileblcE e

retval
SiEileblcE S [ee

X: undet
V.. undet

Thursday, August 23, 12

Internal Representation

struct Foo doSomething(1nt a) {
struct Foo retval = { a, a + 1 };
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

f retval
SisileblcE e copy SiEileblcE S [ee

Thursday, August 23, 12

Internal Representation

struct Foo doSomething(int a) {
struct Foo retval = { a, a + 1 };
return retval;

}

int main () {
struct Foo f;
f = doSomething(1);
return 0O;

f

SisileblcE e

Thursday, August 23, 12

Returning Structs

® |his code has an issue:

struct Foo { i1nt x; 1int vy; };

struct Foo* doSomething(i1nt a)
struct Foo retval = { a, a 1
return &retwval;

}

int main () {
struct Foo* £,
f = doSomething(1);
return 0O;

j

{
} -

’

Thursday, August 23, 12

Problem

struct Foo retval = { a, a + 1 };

Stack Heap

retval
SiEeblc e [FE©

Thursday, August 23, 12

Problem

return &retval;

Stack Heap

retval
SiEeblc e [FE©

Thursday, August 23, 12

Problem

<<doSomething returns without copy>>

Stack Heap

PEPEPEPRPEPEPEPRPRP EPRP,

Thursday, August 23, 12

struct Foo* £

Problem

doSomething (

1

)

°
4

PEPEPEPRPEPEPEPRPRP EPRP,

Stack

Heap

Thursday, August 23, 12

Returning Structs

® This code is ok:
struct Foo { int x; 1nt vy; };

struct Foo* doSomething(int a) {
struct Foo* retval =
malloc(sizeof(struct Foo));
retval->x = a;

retval->y = a + 1;
return retval;

}

int main () {
struct Foo* £ = doSomething(1);

free(£);
return 0O;

}

Thursday, August 23, 12

Why it's Ok

struct Foo* retval =
malloc(sizeof (struct Foo));

Stack Heap

SiE Ut Fow

X: undetf
Voo undefk

Thursday, August 23, 12

Why it's Ok

retval—->x
retval->y

dy
a + 1;

Stack

IHHHEHI

Heap

SiE Ut Fow

Why it's Ok

return retval;

Stack

Heap

Why it's Ok

struct Foo* £ = doSomething(1);

Stack Heap
Copy

..

Why it's Ok

struct Foo* £ = doSomething(1);

Stack Heap

SiE Ut Fow

Why it's Ok

free (

f

) ;

Stack

Heap

PEPEPEPEPEPEP RO RO EP PP

Thursday, August 23, 12

Recall

® The stack is automatically managed

® Allocation: variable / struct / array
declaration

® Deallocation: leave a block
® The heap is manually managed

® Allocation:malloc/calloc/
realloc

® Deallocation: free

Thursday, August 23, 12

Assertions

Assertions

® Used to assert that something is true at a
given point

® |fitis true,the program goes on

® |f it is not true, then the program
terminates

Thursday, August 23, 12

Using Assertions

#include <assert.h>
int main () {

assert(3 * 2 > 7);
return 0;

Assertion failed: (3 * 2 > 7),
function main, file assert.c, line 4.
Abort trap: 6

Thursday, August 23, 12

Usefulness

® Great for debugging
® Can put assumptions into code

® Acts as executable documentation

vold doSomething(int* pointer) {
// assume pointer isn’t NULL
assert (pointer != NULL);
printf (“%i\n”, *pointer);

J

Thursday, August 23, 12

Caveats

® They are intended as a debugging tool

® They can be shut off like so:

fdefine ND:

L BUG

#include <assert.h>

int main ()

{

assert(3 * 2 > 7);

return 0O

[
’

Thursday, August 23, 12

Question #|

#include <assert.h>

int main () {
int x = 0;
assert(x = 3);

// what does X equal?
return 0O;

Thursday, August 23, 12

Question #|

#include <assert.h>

int main () {
int x = 0;
assert(x = 3);
[/ x ==

return 0O;

Thursday, August 23, 12

Question #2

#define NDEBUG
#include <assert.h>

int main () {
int x = 0;
assert(x = 3);

// what does X equal?
return 0O;

Thursday, August 23, 12

Question #2

#tdefine NDEBUG
#include <assert.h>
int main () {
int x = 0;
(X

= 3)
// x = 0

return 0O;

Thursday, August 23, 12

The Point

® No work should be done in an assertion

Thursday, August 23, 12

Exam #2

Thursday, August 23, 12

Statistics

o As:8
® Average: /8 ® B's: |2
® Min:52 o C’s: |5
® Max: 97 ® D’s: 4

® [’s:2

Course Review

